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1 Introduction, Complexity Theory

Recall in class we talked about the Littlewood-Richardson coefficients, which are defined as structure
constants for multiplication in the basis of Schur functions sλ:

sµsν =
∑
λ

cλµ,νsλ

The Kroknecker coefficients kλµ,ν are defined in a similar relation between Schur functions:

1∏
i,j,k(1− xiyjzk)

=
∑
λ,µ,ν

kλµ,νsλ(x)sµ(y)sν(z)

In 1999, Stanley gave as a problem [1] to find a ‘combinatorial interpretation‘ of the Kronecker
coefficients kλµ,ν , inspired by the combinatorial interpretation we have for cλµ,ν . What does it mean
for a collection of coefficients to have a ‘combinatorial interpretation‘?

Complexity theorists have an interesting answer to this question. Let 〈µ〉 denote the number of
bits used to represent the partition µ. The simplest representation is as a vector (µ1, . . . , µk), so
that 〈µ〉 = |µ|.

Definition 1.1. Let us summarize the input x = (λ, µ, ν), so we can write kλµ,ν = k(x). A collection
of coefficients k(x) has a #P-formula if there exists a polynomial p : N → N and polynomial-time
algorithm F (x, y) such that

k(x) = #{y ∈ {0, 1}p(〈x〉) | F (x, y) = 1}

In other words, k(x) counts the number of length-p(〈x〉) bitstrings y for which F (x, y) = 1.

The set of collections of coefficients with #P-formulas is called #P, which is an important com-
plexity class in computational complexity theory. If a collection of coefficients has a #P-formula,
a complexity theorist says that qualifies as a combinatorial interpretation, because the coefficients
are counting the size of some class of objects, where we can verify if each individual object is in the
class in polynomial-time.
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coefficients complexity of positivity complexity of computation
Kλ,µ (Kostka numbers) P #P-complete†

cλµ,ν (Littlewood-Richardson coefficients) P #P-complete†

kλµ,ν (Kronecker coefficients) NP-hard ?†

k̂λµ,ν (restricted Kronecker coefficients) NP-hard #P†

Table 1: we will discuss in this talk any results marked with †

We can connect the complexity of computing the value of the coefficient with the complexity of a
related problem:

Definition 1.2. The positivity problem for a collection of coefficients k(x) is simply the question
“Is k(x) > 0?”

Consider a collection of of coefficients k(x) that has a #P-formula. Then the positivity problem
for that collection of coefficients is the same as:

k(x) > 0 ⇐⇒ ∃y ∈ {0, 1}p(〈x〉) s. t. F (x, y) = 1

You may be familiar with the above definition: this means that deciding the positivity of k(x) is
in NP! In other words, deciding positivity of k(x) is just answering the question ‘does there exist
a length-p(〈x〉) bitstring for which F (x, y) = 1?’. So we conclude

Lemma 1.3. If computing k(x) ∈ #P, then the positivity problem {k(x) > 0} ∈ NP.

There are many, many more interesting NP problems, but the ones we will focus on will take this
form. A summary of some results we will discuss is given in Table 1.

We haven’t defined P and NP-complete, but many computer scientists believe that P 6= NP, which
would mean that NP-complete problems are strictly harder than P problems. If P 6= NP, this would
show that the complexity of deciding positivity of k(x) is strictly harder than the complexity of
deciding positivity of c(x).

The Kostka numbers Kλ,µ count the number of tableaux of shape λ and content µ. We have
already seen the Littlewood-Richardson and Kronecker coefficients cλµ,ν , kλµ,ν . Note that as stated

in Table 1, a combinatorial interpretation for kλµ,ν is still unknown, but instead we will discuss

a combinatorial interpretation for a restricted class k̂λµ,ν from [2]. Before the innovations in [2],
combinatorial interpretations were only known for collections of coefficients where the complexity
of positivity is P. The combinatorial interpretation for k̂λµ,ν was the first found for a collection of
coefficients whose positivity was NP-hard.

Not only do we discuss that the complexity of computation for the Kostka numbers, Littlewood-
Richardson coefficients, and restricted Kronecker coefficients is #P, we further show the former two
are #P-complete, which means they are the hardest possible counting problems. In a very formal
sense, a collection of coefficients k(x) being #P-complete means that any other counting problem
can be seen as a special case of k(x) (you just need to find the right x).

For a more in-depth discussion of the classes P, NP, #P, and completeness for NP and #P, see [3].
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2 Littlewood-Richardson Coefficients

It turns out (as we discussed in class) that the Littlewood-Richardson Coefficients have a beautiful
combinatorial interpretation called the Littlewood-Richardson Rule (see also [4], Theorem A.1.3).

Theorem 2.1 (Littlewood-Richardson Rule). The Littlewood-Richardson coefficient cλµ,ν is equal
to the number of LR (Littlewood-Richardson) semistandard Young tableaux of shape λ/µ, and type
ν. A tableaux is LR if when its entries are read right to left, top to bottom, the number of copies
of i that have been seen so far is at least the number of copies of i+ 1 that have been seen, for all i.

This interpretation is equivalent to the following that we will use for the rest of the presentation
(see [5], page 61):

Corollary 2.2. The Littlewood-Richardson coefficient cνλ,α counts the number of LR tableau of
shape λ ∗ α of content ν.

Here, λ ∗ α refers to the following operation producing a skew shape:

So cνλ,α still count LR tableau of skew shape, just a slightly different skew shape!

3 Hardness Results for Kotska and Littlewood-Richardson

We will cover the hardness results developed in [6].

Theorem 3.1. The computation of Kλµ and cνλα are #P-complete problems.

Proof Outline. We’ll first demonstrate that computing LR coefficients is a #P-hard problem. Then,
we demonstrate that Kostka numbers are a special case of the LR coefficients. Finally, we show
that computing Kostka numbers is a #P-complete problem. Because any Kostka number can be
computed by computing a LR coefficient, this means that computing LR coefficients is a #P-
complete problem as well.

Lemma 3.2. The problem of computing Littlewood-Richardson coefficients is #P-hard.

Proof. We note by Definition 1.1 that any problem #P is counting the size of some class of objects.
Thus, because Corollary 2.2 gives us a combinatorial interpretation of the Littlewood-Richardson
coefficients, it follows that the computation of these coefficients is in #P.
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One interesting note to make here is that we need to ensure that checking membership of the group
takes polynomial time, as per Definition 1.1. Checking membership of the group is certainly linear
in the sum of the entries because we only need to compute the addition of each entry in two different
sums, but this turns out to potentially still be too slow; if we represent a tableau by its entries
in binary, we can use as little as log(sum of entries), which means that our checking algorithm is
suddenly exponential in the sum of the entries. Thus, we do need to refine our tableau to be unary,
as in this case every tableau’s size is exactly the sum of its entries.

Lemma 3.3. The computation of Kostka numbers is a #P-complete problem.

The definition of #P-complete allows us to readily use #P-complete problems to prove the com-
pleteness of other problems: if a #P-complete problem can be shown to be a special case of a
different problem in #P, then that problem is by definition #P-complete as well! Before we can
use this method, we need to introduce a #P-complete problem to use.

Definition 3.4 (Contingency Table). For vectors a = (a1, . . . , am) and b = (b1, . . . , bn), a contin-
gency table is an m× n array with nonnegative integer entries where the sum of the entries in row
i is ai and the sum of the entries in column j is bj .

Lemma 3.5. Denote I(a,b) as the set of contingency tables with row sums a and column sums b,
with a ∈ Z2

≥0 and b ∈ Zk≥0. Then the problem of computing |I(a,b)|, which is the number of 2× k
contingency tables for given row and column sums, is #P-complete.

For a proof of Lemma 3.5, see [7].

Proof of Lemma 3.3. To demonstrate that computing Kostka numbers is #P-complete, we will
demonstrate that the problem of counting 2 × k contingency tables, which is #P-complete as
mentioned earlier, can be reduced to computing Kostka numbers.

We are given I(a,b), the set of 2× k contingency tables with row sums a and column sums b. Set
λ = (a1 + a2, a2) and µ = (b1, . . . , bk, a2). We claim that for this λ and µ,

|I(a,b)| = Kλµ.

To prove this, we’ll construct a bijection between members of |I(a,b)| and members of Kλµ.

First, using the RSK correspondence, we can construct a bijection between tables in |I(a,b)| and
pairs of SSYT (T1, T2) with a common shape ν, given by the set ∪νT(ν,a)×T(ν,b). In particular,
for a 2 × k contingency table M , each entry in T1 comes from an entry in that row of M , so the
contents of T1 are actually given by a. For the same reason, the contents of T2 are given by b.

Now, let’s look at the possibilities for T1. Because the content of T1 is given by (a1, a2), we can
reach the following conclusions about ν:

1. ν contains at most two rows. Because entries are strictly decreasing downwards, the fact that
T1 is filled solely with 1’s and 2’s means that it can not contain more than two rows.

2. If the shape of ν is (ν1, ν2), then ν � a. Note that every 1 entry of an SSYT must be in the
first row. Thus, we must have ν1 ≥ a1, so ν � a.

3. For any given ν and a such that ν � a, there is exactly one possible SSYT with shape ν and
content a. Note that the 1’s must occupy the leftmost segment of the top row. Thus, there
is only one possible configuration for the 1’s so the 2’s naturally fill in the remaining spaces.
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Thus, even though we are given (T1, T2) ∈ ∪νT(ν,a) × T(ν,b), T(ν,a) has size 1 when ν � a and
0 otherwise, so this set is in bijection with the set ∪ν�aT(ν,b). Now, this is a union of tableaux
with similar shapes and identical content, but Kostka numbers count the number of tableaux with
a single given shape and content, so we must find a bijection from this union to a set of tableaux
with identical shape and content.

To do so, we note that ν1 ≤ a1 +a2 and ν2 ≤ a2. In a sense, we can view each ν as selecting a1 +a2
cells as a left-leaning subset of the shape (a1 + a2, a2), and filling it with a1 + a2 of the numbers
1 through k. Thus, a reasonable way to choose a new set of tableaux to encapsulate all viable
tableaux is to take any viable tableau in ∪ν�aT(ν,b), extend it to a tableau of shape (a1 + a2, a2),
and fill in the added boxes with the value k+ 1. It’s clear that this extension works for all possible
ν, always adds a2 values of k + 1, always creates a tableau of size (a1 + a2, a2), and preserves the
uniqueness of tableaux, so if we denote λ = (a1+a2, a2) and µ = (b1, . . . , bk, a2), this process creates
a bijection between ∪ν�aT(ν,b) and Kλµ.

We’re not done yet! We can take this chain of bijections one step further, creating bijections
between this form of Kostka numbers and a set of Littlewood-Richardson coefficients. In doing so,
we demonstrate that computing I(a,b) can also be reduced to computing a Littlewood-Richardson
coefficient, demonstrating that it is also a #P-complete problem.

Lemma 3.6. The Kostka numbers created in the previous lemma, specifically Kλµ for λ ∈ Z2
≥0

and µ ∈ Zk+1
≥0 , can be expressed as Littlewood-Richardson coefficients. In particular, there exist

partitions α and ν such that Kλµ = cνλα.

Proof. Remember from Corollary 2.2 that the Littlewood-Richardson coefficient cνλα is equal to the
number of skew tableaux with shape λ ∗ α and content ν. Thus, our task is to find a bijection
between any tableau in T(λ, µ) and some LR skew tableau with shape λ ∗ α and content ν. The
only real difference between the two sets is that the LR skew tableau need to have a skew shape,
and need to follow the Littlewood-Richardson criteria, which means that reading from right to left,
no number occurs more often than the number below it. In this case, a natural way to create a
bijection is to simply start with the tableau in T(λ, µ) and extend it by adding some tableau α that
not only makes the tableau into a skew tableau but also ensures its LR-ness.

To this end, we set α = (α1, . . . , αk) to have values

αi =
∑
j>i

µj ,

and fill row i of α with entirely i. To adjust the content to match this, we set ν to have νi = µi+αi.

With this construction of α, we must verify the following properties:

• The newly constructed skew tableau is LR. Take any value i. Then when we read from right
to left, we first read through α before reading through λ. In α, αi occurs

∑
j>i µj times and

then αi+1 occurs
∑
j>i+1 µj times, so at the end of α we have that i has occurred µi+1 times

more than i+1. Therefore, because λ contains exactly µi+1 instances of i+1, there can be no
point where the count of i+ 1 is higher than the count of i. Every value i meets the criteria
for LR, so this tableau is LR.
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• This construction is bijective. If two tableaux λ are different, then clearly because we have
only extended the tableaux, their extensions will be different as well. Furthermore, α is
entirely decided by µ, so every extension will have the same shape and content, despite the
tableaux all being different.

We have therefore created a bijection between each table in T(λ, µ) and a corresponding LR skew
tableau of shape λ ∗ α and content ν. Thus, for this λ, α, ν, we have Kλ,µ = cνλ,α, as desired.

This completes our proof of Theorem 3.1. Because the #P-complete problem of counting 2 × k
contingency tables can be reduced through the bijections given above to the computation of LR
coefficients, and the computation of LR coefficients is a problem in #P, it must be #P-complete
as well. It’s interesting to note that because computing Kostka coefficients is #P-complete, the
problem of computing LR coefficients can also be reduced to computing Kostka coefficients.

4 Kronecker Coefficients

Now we detail some of the hardness results covered in [2]. It is still open to find a #P-formula for

the Kronecker coefficients kλµ,ν . So instead, we find a #P-formula for a restricted collection k̂λµ,ν
whose positivity is still NP-hard (we do not show the positivity is NP-hard here).

The restricted collection of coefficients we will use is triples (λ, µ, ν) that are simplex-like. The
definition will actually involve geometric points sitting in a simplex, so we will need to do a couple
of geometric things!

Let Pr be the size-r 3-dimensional simplex, i.e. Pr = {(x, y, z) ∈ {0, . . . , r−1}3 | x+y+z ≤ r−1}.
Let bary(S) =

∑
p∈S p be the barycenter of the set S. Now consider a set P that lies ‘in between‘

Pr and Pr+1, i.e. a set P where Pr ⊆ P ( Pr+1 such that |P | = n.

Lemma 4.1. For all P with |P | = n, such that there exists r with Pr ⊆ P ( Pr+1, we have

p(n) , (1, 1, 1) · bary(P ) = (1, 1, 1) · bary(Pr) + r(n− |Pr|)

Proof. The projection of the barycenter of P to the diagonal (1, 1, 1) can be computed as follows:

(1, 1, 1) · bary(P ) = (1, 1, 1) ·
∑
p∈P

p = (1, 1, 1) ·
∑
p∈Pr

p︸ ︷︷ ︸
x+y+z≤r−1

+(1, 1, 1) ·
∑

p∈P\Pr

p

︸ ︷︷ ︸
x+y+z=r

= (1, 1, 1) · bary(Pr) + r(n− |Pr|)

This value only depends on n, so call the projection p(n) = (1, 1, 1) · bary(Pr) + r(n − |Pr|). For
any n, there is only one r such that there exist |P | = n with Pr ⊆ P ( Pr+1, so we can define this
value for all n ≥ 1.

Now consider an arbitrary point set in the cube P ⊆ {0, . . . , r − 1}3. It turns out that sets of the
form we just considered minimize the projection of the barycenter:
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Lemma 4.2. If |P | = n, (1, 1, 1) · bary(P ) ≥ p(n), with equality iff there exists r with Pr ⊆ P (
Pr+1.

Proof. Let r be the unique integer such that there exist |P ∗| = n with Pr ⊆ P ∗ ( Pr+1. Pick P ∗

so that P ∩ (Pr+1 \ Pr) ⊆ P ∗ ∩ (Pr+1 \ Pr) (P ∗ contains all the points of P that are on the face of
the size-(r + 1) simplex).

Consider all points (x, y, z) ∈ P \P ∗. If this set is empty, then P = P ∗ so that (1, 1, 1) · bary(P ) =
p(n). Otherwise, note that any such (x, y, z) must necessarily have x + y + z > r. If we replace
each (x, y, z) with a point in P ∗, then (1, 1, 1) · bary(P ) can only decrease (as x+ y + z ≤ r for all
points in Pr+1). So if this set is nonempty, we have that (1, 1, 1) · bary(P ) > p(n).

Now the partitions come in when counting types of these point sets. We say a point set P has
marginals (λT , µT , νT ) if for all 0 ≤ i ≤ r − 1:

λTi = #{(x, y, z) ∈ P | x = i}, µTi = #{(x, y, z) ∈ P | y = i}, νTi = #{(x, y, z) ∈ P | z = i}

so that λ gives the marginal distribution of x-coordinates, µ for y-coordinates, and ν for z-
coordinates. We call a point set P a pyramid if for any (x, y, z) ∈ P and 0 ≤ x′ ≤ x, 0 ≤
y′ ≤ y, 0 ≤ z′ ≤ z, we have that (x′, y′, z′) ∈ P also.

Let tλµ,ν count the number of point sets P with marginals (λT , µT , νT ), and pλµ,ν count the number

of pyramids with marginals (λT , µT , νT ). We have the following relation between pλµ,ν , kλµ,ν , and

tλµ,ν .

Lemma 4.3. For all (λ, µ, ν), we have pλµ,ν ≤ kλµ,ν ≤ tλµ,ν .

The proof is very interesting, but involves far more representation theory than we have time to get
into in this presentation. At least, it should be clear why pλµ,ν ≤ tλµ,ν (because all pyramids are
trivially point sets).

Now we can define what it means to be simplex-like. Let λT be the transpose of the partition λ,
then:

Definition 4.4. Let (λ, µ, ν) be such that |λ| = |µ| = |ν| = n 6= 0. Then (λ, µ, ν) is simplex-like if
there exists some r such that the Young diagrams of λ, µ, ν have at most r+1 columns and

r∑
i=0

iλTi +
r∑
i=0

iµTi +

r∑
i=0

iνTi = p(n)

In the case of simplex-like marginals, it turns out that pλµ,ν and tλµ,ν coincide:

Lemma 4.5. If (λ, µ, ν) are simplex-like, then pλµ,ν = tλµ,ν .

Proof. Consider an arbitrary point set P with marginals (λT , µT , νT ). If we show that this point
set is necessarily a pyramid, this establishes that pλµ,ν = tλµ,ν .
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Let’s look at the projection of the barycenter of P :

(1, 1, 1) · bary(P ) =
∑
p∈P

(1, 1, 1) · p =
∑

(x,y,z)∈P

x+
∑

(x,y,z)∈P

y +
∑

(x,y,z)∈P

z

=

r∑
i=0

iλTi +

r∑
i=0

iµTi +

r∑
i=0

iνTi = p(n)

where the last equality follows because (λT , µT , νT ) are simplex-like. By Lemma 4.2, this means
that there must exist r such that Pr ⊆ P ( Pr+1. But such a P is a pyramid!

Now let k̂λµ,ν be the restricted Kronecker coefficients, which are the Kronecker coefficients, except
nonzero iff (λ, µ, ν) are simplex-like. We can finally establish the following:

Theorem 4.6. k̂λµ,ν has a #P-formula.

Proof. By Lemma 4.3 and Lemma 4.5, we have that pλµ,ν = kλµ,ν = tλµ,ν if (λ, µ, ν) are simplex-like.

So we must only produce a #P-formula for tλµ,ν , i.e. algorithm F such that

tλµ,ν = #{y ∈ {0, 1}p(〈x〉) | F (x, y) = 1}

Like many algorithms complexity theorists produce, we will do this informally. Because (λ, µ, ν)
are simplex-like and all have at most r + 1 columns, we have r ≤ n + 1. It takes 3 log r bits to
represent a point in {0, . . . , r − 1}3, so a size-n point set can be represented by a bitstring of size
3n log r ≤ 3n2. Given a size-n point set P , the algorithm F will simply check that the marginals
for P are (λT , µT , νT ), which just requires tallying up the coordinates for all the points, which can
be done in polynomial time.
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