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1. Abstract

This report will be a literature review on a result in algorithmic discrepancy theory. We will
begin by providing a quick overview on discrepancy theory and some major results in the field,
and then focus on an important result by Shachar Lovett and Raghu Meka in [LM15]. We
restate the main algorithm and ideas of the paper, and rewrite proofs for some of the major
results in the paper.

2. Introduction

The discrepancy problem is as follows: given a finite family of finite sets of points, our goal
is to color the underlying points (contained in the union of all the sets in the family) red and
blue, such that each set has a roughly equal number of red and blue points. Formally, it is
described as follows: Given a universe [n] = {1, ..., n} and a collection of sets in the universe
S = {S1, ..., Sm ⊆ [n]}, We wish to find an assignment χ : [n] → {−1, 1} such that disc(χ) is
minimized, where disc(χ) is defined as

disc(χ) = max
Si∈S

∣∣∣∣∣∣
∑
i∈Si

χ(i)

∣∣∣∣∣∣ .
Perhaps two of the most major results in Discrepancy Theory came in the 1980’s, when two
papers published proofs of the existence of assignments with surprisingly strong lower bounds.
First, in 1981, József Beck and Tibor Fiala showed that given an upper limit on the number of
sets that each point is included in, we can find an assignment with discrepancy linear in that
limit.

Theorem 1 ([BF81]). We start with the assumption that for each x ∈ [n], it appears in at most
t sets. More formally, we have the constraint that ∀i ∈ [n],

|{j; i ∈ Sj}| ≤ t

Then, one can find an assignment χ such that disc(χ) ≤ 2t− 1.

We provide a proof of the Beck-Fiala theorem in the appendix in 6.1, using only arguments
from linear algebra.

The other groundbreaking result in Discrepancy Theory is called Spencer’s Six Standard De-
viations and is given here:

Theorem 2 ([Spe85]). Given any system of n sets on a universe of n points, there exists a
coloring χ such that disc(χ) ≤ 6

√
n.
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Both of these results remain cornerstones of Discrepancy Theory. Yet, despite their significance,
they were both proven using nonconstructive methods, so we had no way to achieve them algo-
rithmically. For some time, it was even conjectured that no algorithm could be provided. This
question remained open until [Ban10], where Nikhil Bansal provides a constructive randomized
algorithm for discrepancy minimization based on an SDP relaxation. Later, Lovett and Meka
propose a new constructive algorithm using only linear algebra [LM15]. We will be focusing on
this paper.

3. Overview

The paper provides a constructive algorithm for minimizing discrepancy, and uses it to prove
that their bounds match the bounds given by the previously mentioned theorems. First, they
demonstrate a result matching Spencer’s Six Standard Deviations.

Theorem 3 ([LM15]). For any system of m sets on a universe of n points, there exists a
randomized algorithm that, in polynomial time and with at least 1/2 chance, computes a coloring

χ : [n]→ {−1, 1} such that disc(χ) < K
√
n log2(m/n) for some universal constant K.

We note that for m = n, as in the case of Theorem 2, we reach the same asymptotic bound
as Spencer provided. [LM15] then provides a similar result for the ”Beck-Fiala case” where the
occurrence of each point is upper bounded

Theorem 4 ([LM15]). For a system of m sets on a universe of n points where each point is
contained in at most t sets, there exists a randomized algorithm that, in polynomial time and
with at least 1/2 chance, computes a coloring χ : [n] → {−1, 1} such that disc(χ) < K

√
t log n

for some universal constant K.

In this review we will focus on Theorem 3. The main idea behind the algorithm will be to
first create a partial coloring. Given a set-system (V, S), where V = {1, ..., n} and |S| = m, we
assume that m ≥ n (the other case can easily be reduced to this case by adding some empty
sets to S). We call this partial coloring χ : V → [−1, 1] such that:

(1) For all Si ∈ S, |χ(Si)| = O(
√
n log(m/n))

(2) |{i : |χ(i)| = 1}| ≥ cn for a constant c > 0

The idea is that if we are provided a good algorithm for finding a partial coloring, we can
repeatedly apply this algorithm on the variables not yet ”colored” by this partial coloring, while
holding the colored ones constant. This will eventually converge to a full coloring and total
discrepancy, as the number of points colored follows a geometric series with ratio

√
1− c, and

the discrepancy can be bounded by O(
√
n log(m/n)).

4. Achieving a Partial Coloring

The first and most important step is actually achieving a good partial coloring. We start with
a convenient construction: We let v1, ..., vm ∈ Rn be the indicator vectors for each of our subsets
S1, ..., Sm respectively. Then, the discrepancy of our collection S can be very easily described as

disc(S) = max
i∈[m]

|〈χ, vi〉|
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Theorem 5 (Main Partial Coloring Result). Let v1, ..., vm ∈ Rn be vectors, and x0 ∈ [−1, 1]n be
a ”starting point”. Further let c1, ..., cm ≥ 0 be thresholds such that

∑m
j=1 exp(−c2j/16) ≤ n/16.

Then let δ > 0 be an approximation parameter. Then there exists an efficient randomized
algorithm which with probability ≥ 0.1 finds x ∈ [−1, 1]n such that

(1) discrepancy constraints: |〈x− x0, vj〉| ≤ cj‖vj‖2
(2) variable constraints: |xi| ≥ 1− δ for at least n/2 indices i ∈ [n]

Moreover, the algorithm runs in time O((m+ n)3δ−2 log(nm/δ))

The reason for the constraint on the cj ’s will become apparent later, but for now we note that
the smaller the cj are, the stronger the theorem is. In other words, we want them to be small,
but they can’t be too small otherwise the theorem won’t hold, hence the constraint. We also
note that we can increase the probability of success by simply running the algorithm multiple
times over.

4.1. The Algorithm.

We begin with a general idea, before going into the details of the algorithm. We also assume
without changing the problem that the vi’s have all been normalized (we can simply adjust our
cj ’s to account for this): ‖vi‖2 = 1,∀i. Consider the following polytope, which describes the
legal values that x ∈ Rn can take on:

P = {x ∈ Rn : |xi| ≤ 1∀i ∈ [n], |〈x− x0, vj〉| ≤ cj}.

Then the above theorem says we can find an x ∈ Rn such that at least n/2 of the variable
constraints are satisfied with (virtually) no slack, and it works with good probability as long
as we have

∑
exp(−c2j ) << n. The idea is to take very small, discrete, Gaussian steps (called

Brownian motion) starting from x0. We intuitively want to use these steps to find such an x
that is as far away from the origin (x0) as possible, as this implies that more of the constraints
are satisfied with no slack.

We are now ready to present the constructive algorithm that serves as a proof of Theorem
5. Let γ > 0 be a small step size such that δ = O(γ

√
log(nm/γ). The correctness of the

algorithm will not be affected by the choice of γ, only the runtime. Further let T = K1/γ
2,

where K1 = 16/3, and assume δ < 0.1. The algorithm then produces X0 = x0, X1, ..., XT ∈ Rn
according to the following algorithm

Algorithm 1: The Brownian Motion process for Theorem 5

for t = 1, ..., T do
· Let Cvart ← Cvart (Xt−1) = {i ∈ [n] : |(Xt−1)i| ≥ 1− δ} be the set of variable
constraints “nearly hit” on the previous iteration;

· Let Cdisc
t ← Cdisc

t (Xt−1) = {j ∈ [m] : |〈Xt−1 − x0, vj〉| ≥ cj − δ} be the set of
discrepancy constraints ”nearly hit” on the previous iteration;

· Let Vt ← V(Xt−1) = {u ∈ Rn : ui = 0∀i ∈ Cvart , 〈u, vj〉 = 0∀j ∈ Cdisc
t } be the

subspace orthogonal to the “nearly hit” variable and discrepancy constraints.;
· Set Xt ← Xt−1 + γUt, where Ut ∼ N (Vt)

end

When we say that U ∼ N (Vt), we are referring to the standard multi-dimensional Gaussian
distribution: U = U1v1+...+Udvd where {v1, .., vd} is an orthonormal basis for Vt and U1, ..., Ud ∼
N (0, 1) are all independent.
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4.2. Analysis Outline.

We seek to prove the following:

Lemma 6. We have that Theorem 5 holds for XT in the above algorithm, and that with proba-
bility at least 0.1, X0, ..., XT ∈ P.

We begin with a useful claim regarding the behavior of the random walk.

Claim 7. For all t we have that Cvart ⊆ Cvart+1 and similarly Cdisc
t ⊆ Cdisc

t+1 for t = 0, ..., T − 1.
This further implies that dim(Vt) ≥ dim(Vt+1).

Proof. Intuitively, we are taking Gaussian steps orthogonal to the subspace Ct, so at each step
we should never be able to remove any elements in Cvart or Cdisc

t . Formally, let i ∈ Cvart . Then
Ut ∈ Vt which implies (Ut)i = 0. This implies that (Xt)i = (Xt−1)i and i ∈ Cvart+1 as desired. The
argument is very similar for the discrepancy constraints. �

Now, we can begin to look at the results of the algorithm.

First, we can prove that with good probability, our Brownian motion will not leave the polytope.
The “nearly hit” constraints serve this purpose; we select step size γ small enough that whenever
a solution approaches a constraint, it is more likely to fall into the δ-band of the constraint than
it is to break the polytope. Once it falls into this band, Claim 7 implies that it will never break
the polytope. This can be shown formally using Gaussian tailbounds.

Next, we argue that the algorithm satisfies many variable constraints and few discrepancy
constraints with high probability. Using our bound on the discrepancy coefficients as well as
Gaussian tailbounds, we can demonstrate that the easily-satisfiable discrepancy constraints is
small, and that it is unlikely that many other ones are met. With this in mind, at any time t
note that there are two scenarios for Cvart : if it is large then we are done, and if it is small then
our Brownian motion is less constrained so we expect to take steps of larger magnitude. Thus,
we argue that by time T it is likely that we “nearly-hit” many variable constraints.

Finally, we look at the computational complexity of the algorithm, which is claimed to be
O((n+m)3δ−2 log(nm/δ)). The paper does not provide a full justification of this runtime, but
we believe it to be inaccurate.

Computing Cvart and Cdisc
t given Xt−1 takes O(nm) time, since computing Cdisc

t requires the
computation of m dot products in Rn. We can sample from N (Vt) by constructing an orthonor-
mal basis for Vt. We do this by constructing an orthogonal basis using our constraints, and using
the completion theorem to find a basis of Vt. Finding a basis from n + m constraint vectors
requires Gaussian elimination, so it takes O((n+m)3) time.

Now, we have to repeat this for T rounds, so the runtime should be expressible as O((n+m)3T ).
Note that T = O(1/γ2), so the runtime described by [LM15] holds in the case where

1

γ2
= O(δ−2 log(nm/δ))

1

γ
= O

(
1

δ

√
log(nm/δ)

)
δ = O(γ

√
log(nm/δ)).
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However, in the paper, γ is selected under the condition δ = O(γ
√
nm/γ). Of course, this ends

up being a small distinction for nm� δ, but it is still worth noting.

A full proof is provided in the appendix at section 6.2.

5. The Discrepancy Minimizer

For the purposes of brevity, we only provide a proof for Theorem 3.

Proof (Theorem 3). To find our full coloring, we will simply repeatedly use Theorem 5. For m

sets on a universe of size n, we’ll select δ = 1/(8 logm) and c1, ..., cm = 8
√

log(m/n), and denote
by vi...vm the indicator vectors for the sets. We’ll use the partial coloring algorithm starting
with vector ~x0 = 0n to find some vector ~x1 where |〈vj , x1〉| <

√
n(8
√

log(m/n)) for all j and
where more than half of the points have values within the “nearly-hit” bound. By Theorem 5,
this has probability of at least 0.1, which we can boost by repeating as needed.

Applying this iteratively to the vectors that haven’t yet been assigned a partial coloring, we
find that within t = O(log n) iterations every value in x will be within δ of an assignment. When
this occurs, for any j ∈ [m], we note that ni <

n
2i

, so we have

|〈vj , x〉| <
t∑
i=0

|〈vj , xt〉|

<
∑√

ni8
√

log(m/ni)

< 8
√
n

∞∑
i=1

√
i+ log(m/n)

2i

< C
√
n log(m/n)

for some constant C.

We then use this candidate solution and round it to an actual coloring. Knowing that each
variable is within δ of either 1 or −1, we’ll set each variable to the one it is closer to with
probability (1 + |xi|)/2, which means that E[χi] = xi. Denoting Y := χ − x we have that the
discrepancy for any set j follows

|〈χ, vj〉| ≤ |〈x, vj〉|+ |〈Y, vj〉|
due to triangle inequality. What’s left, then, is to find an upper bound for |〈Y, vj〉|. Noting that
|Yi| ≤ 2, E[Yi] = 0, σ2(Yi) ≤ δ (which the paper claims but we are only able to show this is true
for 2δ), and ||vj ||2 ≤

√
n, the fact that ||vj ||∞ ≤ 1 allows us to use a Chernoff bound and get

Pr[|〈Y, vj〉| > 2
√

2 logm
√
nδ] ≤ 2 exp(−2 logm)

≤ 2/m2

≤ 1/2m

for m > 2. Note that δ = 1/(8 logm), so 2
√

2 logm
√
nδ =

√
n, which means that across

all j we have Pr[|〈Y, vj〉| >
√
n] < 1/2. Therefore, with probability at least 1/2, disc(χ) ≤

C
√
n log(m/n) +

√
n < K

√
n log(m/n), as desired. �



6 JONATHAN LIU AND MICHAEL WHITMEYER

References

[BF81] J. Beck and T Fiala. “‘Integer-making’ theorems”. In: Discrete Applied Mathematics
3 (1981), pp. 1–8.

[Ban10] Nikhil Bansal. “Constructive Algorithms for Discrepancy Minimization”. In: FOCS
(2010), pp. 3–10.

[Cha00] Bernard Chazelle. The Discrepancy Method. Randomness and Complexity. Cambridge
University Press, 2000.

[LM15] Shachar Lovett and Raghu Meka. “Constructive Discrepancy Minimization by Walking
on the Edges”. In: SIAM J. Comput. 44.5 (2015), pp. 1573–1582.

[Spe85] J. Spencer. “Six standard deviations suffice”. In: Trans. Amer. Math. Soc 289 (1985),
pp. 679–706.



ALGORITHMIC DISCREPANCY MINIMIZATION 7

6. Appendix

6.1. A proof of the Beck-Fiala Theorem. We present a proof of the Beck-Fiala theorem
using only arguments from linear algebra.

Proof. [Cha00] We start by initializing all χ(i) = 0,∀i ∈ [n], and we call all of these variables
undecided. We also call a set stable if it has less than or equal to t undecided elements. We
also note that due to the constraint, there must be less n sets that contain strictly more than
t elements to start off with (all of which are undecided upon initialization). If we impose the
constraints that all of the elements in each unstable set must be zero, we get a system of less than
n equations, and n variables. This tells us that there is at least one nontrivial solution to the
system of equations, that changes only undecided variables and maintains that the discrepancy of
all unstable sets remains zero. We can normalize this solution until at least one of the undecided
variables is ±1. Then, this variable is decided, and we have a partial coloring. We now have
at most n − 1 undecided variables, and each undecided variable is in (−1, 1). By the same
argument from above, we have that the number of unstable sets is strictly less than the number
of undecided variables, so we can repeat the procedure to find another nontrivial solution to our
system of equations. We continue in the manner until all the sets are stable. Then we note that
until a set is declared stable, its discrepancy is 0. Then, when it is declared stable, it has at most
t undecided variables, all of which are in (−1, 1). Then the process of deciding those variables
changes the discrepancy of the set by strictly less than 2t. And since the final discrepancy must
be integral, we get the result. �

6.2. A Full Proof of Lemma 6. We have already argued about the runtime of the algorithm.
Here, we must show that the solution is unlikely to leave the polytope, that few discrepancy
constraints are met, and that many variable constraints are met.

Claim 8. For γ ≤ δ/
√
c log(mn/γ) and c a sufficiently large constant, with probability at least

1− 1/(mn)c−2 we have that X0, ..., XT ∈ P

To prove the above claim, we will need to use a Gaussian tail bound:

Claim 9. For any λ > 0, P (|G| ≥ λ) ≤ 2 exp(−λ2/2), where G ∼ N (0, 1)

Proof. We have that

P (|G| > λ) = 2P (G > λ) = 2

∫ ∞
λ

1√
2π

exp(−t2/2)dt ≤ 2

∫ ∞
λ

t

λ

1√
2π

exp(−t2/2)dt =
2 exp(−λ2/2)√

2πλ

From here, it is easy to see that for λ ≥ 1/
√

2π we have that 2 exp(−λ2/2)√
2πλ

≤ 2 exp(−λ2/2) as

desired. For the case when λ ≤ 1/
√

2π, it is easy to see that 2 exp(−λ2/2) > 1 so the bound is
trivial. �

Proof of Claim 8. Clearly X0 = x0 ∈ P. We further define Et := {Xt 6∈ P|X0, ..., Xt−1 ∈ P}
denote the event that Xt is the first element of the sequence not in P. We then have

Pr(X0, ..., XT ∈ P) = 1−
T∑
t=1

Pr(Et).

The next step of the proof is clearly to calculate Pr(Et). In order for Et to happen, it must be
the case that either a variable constraint or a discrepancy constraint was violated. Lets first look
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at the variable constraint case: say (Xt)i > 1. Since Xt−1 ∈ P, we must have that (Xt−1)i ≤ 1.
Yet, if (Xt−1)i ≥ 1−δ, then i ∈ Cvart so (Xt−1)i = (Xt)i. Thus, for the constraint to be violated,
we must have had that (Xt−1)i < 1− δ. Then, in order for (Xt)i to be greater than 1, and since
Xt = Xt−1 + γUt, we must have that |U(t)i| ≥ δ/γ.

Now, let’s look what must happen in order for Xt to violate a discrepancy constraint. First
we define W := {e1, ..., en, v1, ..., vm}. By our construction of W , we conclude that if Et holds
then we must have that |〈Xt − Xt−1, w〉| ≥ δ for some w ∈ W . This is equivalent to saying
that |〈Ut, w〉| ≥ δ/γ for that same w. We note here that, once again by construction of W , we
have that if |U(t)i| ≥ δ/γ holds, then we must have that |〈Ut, w〉| ≥ δ/γ holds for some w, in
particular it holds if we pick w = ei. However, the reverse does not hold. Therefore, it since the
event of a variable constraint being violated is entirely contained in the event of a discrepancy
constraint being violated, it suffices to bound Pr[|〈Ut, w〉| ≥ δ/γ]. In order to bound this, we
need the following claim:

Claim 10. Let V ⊆ Rn be a subspace and let G ∼ N (V ). Then for all u ∈ Rn, 〈G, u〉 ∼
N (0, σ2), where σ2 ≤ ‖u‖22

Proof. We have that G = G1v1 + ...+Gdvd, where {v1, ..., vd} is an arbitrary orthonormal basis

for V and G1, ..., Gd are all standard normals and independent. Then 〈G, u〉 =
∑d

i=1〈vi, u〉Gi.
This is a Gaussian RV which has mean zero, and variance

∑d
i=1〈vi, u〉2. This equation is simply

equal to ‖ProjV u‖22, the norm squared of the projection of u onto the span of V . Therefore, we

have that
∑d

i=1〈vi, u〉2 ≤ ‖u‖22, and we are done. �

Now we can use the above claim, and we have that 〈Ut, w〉 is Gaussian with mean 0 and variance
at most 1. Then, by claim 9, we have that:

Pr[|〈Ut, w〉| ≥ δ/γ] ≤ 2 exp(−(δ/γ)2/2)

Now, by our choices of variables, we have that δ/γ =
√
C log(nm/γ) and T = O(1/γ2). There-

fore, we have

Pr[X0 ∪ ... ∪Xt 6∈ P] =

T∑
t−1

Pr[Et]

which, by a union bound,

≤
T∑
t−1

∑
w∈W

Pr[|〈Ut, w〉| ≥ δ/γ] ≤ T (n+m) ·2 exp(−(
√
C log(nm/γ))2/2) = T (n+m) ·2

( γ

nm

)C
≤ T (nm)

γ2

(nm)C
≤ 1

(nm)C−2

For large enough C, since we have that γ < 1 and (nm) > 1. �

We are now well on our way to proving Lemma 6. The intuition behind the remaining steps
is as follows. We will use the constraint on our discrepancy thresholds cj , j ∈ [m] to argue first
that E[|CvarT |]� n. This will be useful because it will mean that dim(Vt−1) will be larger, which
means that E[‖Xt‖2] should increase more appreciably compared to the previous timestep. At
any given timestep ,either |Cvart | is large and we are done, or |Cvart | is small and once again
dim(Vt−1) and we will be taking bigger steps. We note also that in order to prove the lemma,
we really only need to show that E[|Cvart |] = Ω(n), since if we achieve this, then we can use this
along with the fact that |CvarT | is upper bounded by n to show that Pr[|Cvart | < n/2] < 0.9.

We first show that E[|Cdisc
t |] is small; that is, on average very few discrepancy constraints are

ever nearly hit.
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Claim 11. E[|Cdisc
t |] < n/4

Proof. We let J := {j : cj ≤ 10δ}. In order to bound the size of J , we have that from our
constraints

n/16 ≥
∑
j∈J

exp(−c2j/16) ≥ |J | · exp(−100δ2/16) ≥ |J | · exp(−1/16) > 9|J |/10

Since δ < 0.1. So we have then that |J | ≤ 1.2n/16 < 2n/16. Now we consider the j 6∈ J . If
j ∈ Cdisc

T , then |〈XT −x0, vj〉| ≥ cj−δ ≥ 0.9cj . We want to bound the probability that his occur.
Via our update formula, we have that XT = x0 + γ(U1 + ...+UT ). We then define Yi = 〈Ui, vj〉.
We then have that for j 6∈ J

Pr[j ∈ Cdisc
T ] = Pr[|Y1 + ...+ YT | ≥ 0.9cj/γ]

We will also need the following Lemma:

Lemma 12 ([Ban10]). Let X1, ...XT be random variables, and let Y1, ..., YT be RVs where each
Yi is a function of Xi. Suppose that for all 1 ≤ i ≤ T , Yi|X1, ..., Xi−1 is Gaussian with mean
zero and variance at most one. Then for any λ > 0:

Pr[|Y1 + ...+ YT | ≥ λ
√
T ] ≤ 2 exp(−λ2/2)

The proof of the above lemma is a generalization of the proof for Claim 9, and is omitted. We
note that Yi = 〈Ui, vj〉 ∼ N (0, σ2), where σ2 ≤ ‖vj‖2 = 1 by our assumption at the beginning of
the problem that we had normalized all the the vi. We can apply the above lemma to our Yi’s,
since Yi is a function of Ui and Yi|U1, ..., Ui−1 is Gaussian with mean zero and variance at most
one to get that

Pr[j ∈ Cdisc
T ] ≤ 2 exp(−(0.9cj)

2/2γ2T

which, since T = K1/γ
2

= 2 exp(−(0.9cj)
2/2K1) < 2 exp(−c2j/2)

We therefore have that

E[|Cdisc
T |] ≤ |J |+

∑
j 6∈J

Pr[j ∈ Cdisc
T ] < 2n/16 + 2n/16 = n/4

Where above we have used conditional expectations, and assumed in the worst case that every
element in J is in Cdisc

T and we have also used the constraint
∑m

j=1 exp(−c2j/16) ≤ n/16. �

Claim 13. E[‖XT ‖22] ≤ n

Proof. We start by noting that it suffices to show that E[(XT )2i ] ≤ 1 for all i ∈ [n], since
E[‖XT ‖22] =

∑
i E[(XT )2i ]. We have that

E[(XT )2i ] = E[(XT )2i |i 6∈ CvarT ]Pr[i 6∈ CvarT ] +

T∑
t=1

E[(XT )2i |i ∈ Cvart \ Cvart−1]Pr[i ∈ Cvart \ Cvart−1]

Now, we have that clearly E[(XT )2i |i 6∈ CvarT ] ≤ 1. For the rest of the terms, we have:

E[(XT )2i |i ∈ Cvart \ Cvart−1] = E[(Xt)
2
i |i ∈ Cvart \ Cvart−1]

= E[((Xt−1)i + γ(Ut)i)
2|i ∈ Cvart \ Cvart−1] ≤ E[(1− δ + γ(Ut)i)

2|i ∈ Cvart \ Cvart−1]

= (1− δ)2 + 2(1− δ)γE[(Ut)i] + γ2E[(Ut)
2
i ]

Here, we note that E[(Ut)
2
i ] = 1 and E[(Ut)i] = 0, so we have

= (1− δ)2 + γ2 ≤ 1− δ + γ < 1

by our construction of γ. �
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Claim 14. E[|CvarT |] ≥ 0.56n.

Proof. We will use the high average norm ofXt and low number of discrepancy constraints broken
to demonstrate that the number of variable constraints broken is high with high probability. Note
that

E[||Xt||22] = E[||Xt−1 + γUt||22]
= E[||Xt−1||22] + 2E[||Xt−1 · γUt||2] + E[||γUt||22]
= E[||Xt−1||22] + E[||γUt||22]
= E[||Xt−1||22] + γ2E[dim(Vt)].

We use the fact that E[Ut] = 0, and we use Claim 10 as well. Then, by Claim 13, we have

n ≥ E[||XT ||22]

n ≥ γ2
T∑
t=1

E[dim(Vt)]

n ≥ γ2|T |E[dim(VT )]

n ≥ K1E[n− |CvarT | − |Cdisc
T |]

n/K1 ≥ E[n]− E[|CvarT |]− E[|Cdisc
T |]

E[|CvarT |] ≥ n(1− 1/K1)− n/4
E[|CvarT |] ≥ n(1− 3/16− 1/4)

E[|CvarT |] ≥ 0.5625n.

�

Now we can fully prove Lemma 6. From Claim 14 and the fact that |CvarT | ≤ n, in the worst
case we have that with probability 0.88, |CvarT | = n/2, and with probability 0.12, |CvarT | = n.
This maximizes the number of instances where |CvarT | ≤ n/2, while still maintaining the fact
that E[|CvarT |] ≥ 0.56. Therefore we have that Pr[|CvarT | > n/2] ≥ 0.12. Combining this with
claim 8 tells us that with probability at least 0.12−1/poly(m,n) we achieve the partial coloring,
and we are done.


