
Multiple examples
Student created 
more than one 
example in one 
problem

Future Steps

[1] Jonathan Liu et al. 2025. Student Utilization of Metacognitive Strategies in Solving Dynamic 
Programming Problems. SIGCSE ‘25.

Introduction & Background Results

How do Learners Use Scratch Paper when Working on Dynamic Programming Problems?
Zihan Wu†, Jonathan Liu‡, Erica Goodwin‡, Diana Franklin‡

†University of Michigan ‡University of Chicago

Methods

Example input value
Student created example input 
with specific values 

Overview: Analysis of scratch paper from students 
solving DP problems can provide insight for how students 
commonly interact with examples and formulas when 
attempting to design DP algorithms. This analysis can 
help with building a tool that scaffolds learning this 
paradigm. 

Related Work
● Effective use of scratch paper for code tracing has 

shown to be helpful in CS1.
● Dynamic Programming has shown to be one of the 

most difficult parts of algorithms courses. 
○ Visualization tools have been developed to help with 

visualizing running a DP algorithm, but none that 
directly target the design of the algorithm.

Collection: Scratch paper scans were collected from a 
separate think-aloud study in which students solved DP 
algorithm design problems with verbal guidance from the 
interviewer [1]. Scratch paper was collected for 18 
students who together solved 27 problems.

Analysis: Scratch Paper scans were parsed for common 
usage patterns to develop a codebook. Once developed, 
authors independently coded all scratch paper for these 
usage. The codebook and frequency of codes is shown on 
the right.

Tool Development: We are developing a tool that 
scaffolds practicing DP algorithm design problems by 
providing an example input and acting as augmented 
scratch paper. We aim to ensure that the tool not only 
provides the affordances that students naturally utilize, as 
found in this poster’s work, but also makes more clear 
how example inputs and outputs can be used to design 
subproblems and recurrences for Dynamic Programming 
algorithms.

Mathematical example
Student used mathematical 
symbols as examples

Abstract example
Student drew abstract graphical 
representations or used symbols 
not necessarily representing the 
relationship between values, e.g. 
A, B, C…

Realistic representation
Student used graphic representations 
to make the examples look more 
realistic in the context of the problem

Filling in a table
Student used 2-D table 
structures to organize 
calculation with the 
example

Interaction with Examples
Student used symbols to 
interact with individual 
terms of the example, 
animating the calculation 
process or relationships 
between the items

Written thoughts
Student wrote comments 
or thoughts in natural 
language 

Decomposition by steps
Student wrote the 
problem decomposition 
for DP problems: base 
case, subproblem, and 
recurrence

Base case
Student attempted to 
write out base cases

Formula in words
Student used natural 
language to express 
formula

Formula in math
Student attempted to 
write out mathematical 
representations of 
formulas

Mathematical Induction
Student attempted to 
build a recurrence from a 
sequence of consecutive 
cases

Written logic with control flow
Student wrote pseudo code or 
written logic that contains 
control flow (e.g. if-else, for, 
while)

(A picture demonstrating distances 
between gas stations)

(A student used circles to represent “coins” in a problem, 
when they did not use circles for any other problems)

(A student used arrows, circles, and other 
symbols to “animate” the examples)

Input Representation

A student wrote question to themselves: “Can 
I make intermediate sum”

A student made notes: 
“not checking all combos”

Using the Example

Process for Developing the Formula

Others

(57% problems, 73% learners) (54% problems, 67% learners) (15% problems, 23% learners) (7% problems, 10% learners)

(39% problems, 50% learners) (72% problems, 90% learners)

(39% problems, 53% learners)

(50% problems, 63% learners)

(22% problems, 27% learners)

(50% problems, 67% learners)

(24% problems, 73% learners)

(72% problems, 37% learners)

(15% problems, 23% learners)

(57% problems, 73% learners)


