MATH 1B DISCUSSION WORKSHEET - 11/6/18

POPULATIONS AND LINEAR DIFFERENTIAL EQUATIONS

1. LINEAR DIFFERENTIAL EQUATIONS

(1) Determine whether the following differential equations are separable, linear, or both. Then, solve each one. (a) $xy' + 2y = x^2 - x$

(b)
$$y' + 3xy = 6x$$

(c) y' + 3xy = 6

(d)
$$xy' - 2y = -8$$

(e)
$$y' - \frac{1}{2}y = \sin(2t)$$

(f)
$$xy' + 2y = 12x^2$$

(2) Using the last differential equation, find a solution for $xy'' + 2y' = 12x^2.$

(3) Show that for some **homogeneous** differential equation

$$\frac{dy}{dx} + p(x)y = 0,$$

if y = f(x) and y = g(x) are both valid solutions, then y = f(x) + g(x) is a valid solution as well.

2. Population Models

- (1) Suppose we have a pond that will support 1000 fish, and the initial population is 100 fish. Write out a logistic differential equation for this scenario, and determine its solution.
- (2) Psychologists in learning theory study learning curves, the graphs of the performance function P = P(t) of someone learning a skill as a function of the training time t. If M represents the maximal level of performance, it is noted that for a certain skill the learning is at first rapid, and then it tapers off (the rate of learning decreases) as P(t) approaches M.
 - (a) Explain why solutions to the differential equation $\frac{dP}{dt} = k(M P)$, k a positive constant, fulfill the above description of P. Sketch a typical learning curve.
 - (b) What's the relationship between this differential equation and the logistic population growth model?
 - (c) (c) Suppose that, for a specific learning activity, it is determined that $P_0 = .1M$ and k = 0.05 for t measured in hours. How long does it take to reach 90% of M, the maximal level of performance?