
MATH 1B DISCUSSION WORKSHEET - 9/5/18

PARTIAL FRACTION DECOMPOSITION + INTEGRAL REVIEW ANSWERS

1. Partial Fraction Decomposition

∫
x2

x2 + 1
dx

We can rewrite the integral as∫
x2

x2 + 1
dx =

∫
x2 + 1− 1

x2 + 1
dx =

∫
x2 + 1

x2 + 1
− 1

x2 + 1
dx =

∫ (
1− 1

x2 + 1

)
dx.

(We could have also done long division.)

From here, we know that the left side can be integrated easily, and the right side is the derivative
of tan−1(x). Therefore, the final answer is∫ (

1− 1

x2 + 1

)
dx = x− tan−1(x) + C .

∫
2x3 − 1

x4 + x
dx

To do our partial fraction decomposition, we first note that the numerator has lower degree
than the denominator. This tells us that we should begin normally decomposing the fraction by
first factoring the denominator.

x4 + x = x(x3 + 1) = x(x+ 1)(x2 − x+ 1).

From here, we know that we are trying to find values of A, B, C, and D such that

A

x
+

B

x+ 1
+

Cx+D

x2 − x+ 1
=

2x3 − 1

x4 + x
.

Multiplying the right hand side’s denominator to both sides of the equation, we get

(A)(x3 + 1) + (B)(x3 − x2 + x) + (Cx+D)(x2 + x) = 2x3 − 1.

Expanding the rest of the equation out, we find

(A)(x3 + 1) + (B)(x3 − x2 + x) + (Cx+D)(x2 + x) = 2x3 − 1

Ax3 +A+Bx3 −Bx2 +Bx+ Cx3 +Dx2 + Cx2 +Dx = 2x3 + 1

(A+B + C)x3 + (−B + C +D)x2 + (B +D)x+A = 2x3 + 1

This tells us that A = 1, which we can use to write

1 +B + C = 2

−B + C +D = 0

B +D = 0.
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Solving this system (however we want) gives us

B =
1

3
, C =

2

3
, D =

−1

3
,

so our final integral has the form∫ (
1

x
+

1

3(x+ 1)
+

2x− 1

3(x2 − x+ 1)

)
dx.

The two integrals on the left integrate to ln |x| and 1
3 ln |x + 1|, respectively, and we can use

u-substitution for the final one. Using u = x2 − x+ 1 and du = 2x− 1dx, we find∫
2x− 1

3(x2 − x+ 1)
dx =

1

3

∫
2x− 1

x2 − x+ 1
dx

=
1

3

∫
du

u

=
1

3
ln |x2 − 2x+ 1|,

so our final answer is

ln |x|+ 1

3
ln |x+ 1|+ 1

3
ln |x2 − x+ 1|+ C = ln |x|+ 1

3
ln |x3 + 1|+ C .

∫
dx

ex + 1

Because we don’t have a great approach to this problem, we will go for broke and try to u-sub.
Using u = ex, we find du = exdx, which tells us 1

exdu = dx so we can write 1
udu = dx. Thus, we

can rewrite the integral and use partial fraction decomposition to find:∫
dx

ex + 1
=

∫
1/udu

u+ 1

=

∫
1

(u)(u+ 1)
du

=

∫ (
1

u
− 1

u+ 1

)
du

= ln |u| − ln |u+ 1|+ C

= ln |ex| − ln |ex + 1|+ C

= |x| − ln |ex + 1|+ C .
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2. One Multi-step Problem

[From Calculus by David Patrick.]

∫
3

x3 − 1
dx

We begin with Partial Fraction Decomposition. We know that x3− 1 = (x− 1)(x2 + x+ 1), so
we know that we are looking for A, B, and C such that

3

x3 − 1
=

A

x− 1
+

Bx+ C

x2 + x+ 1
.

Multiplying the common denominator gives us

3

x3 − 1
=

A

x− 1
+

Bx+ C

x2 + x+ 1

3 = A(x2 + x+ 1) + (Bx+ C)(x− 1)

3 = Ax2 +Ax+A+Bx2 + Cx−Bx− C
3 = (A+B)x2 + (A−B + C)x+ (A− C)

Solving for A, B, C, gives us A = 1, B = −1, C = −2.

Our partial fraction decomposition therefore gives us

∫
3

x3 − 1
dx =

∫ (
1

x− 1
− x+ 2

x2 + x+ 1

)
dx

= ln |x− 1|+ C −
∫

x+ 2

x2 + x+ 1
dx

For the right hand side, we’d like to be able to use a u-sub to simplify the fraction, but the
derivative of x2 +x+ 1 is 2x+ 1, which we don’t have in the numerator. By making some clever
rewriting, we can make a multiple of it to do u-sub:

∫
x+ 2

x2 + x+ 1
dx =

∫
(x+ 0.5) + 1.5

x2 + x+ 1
dx

=

∫
(1/2)(2x+ 1)

x2 + x+ 1
dx+

∫
1.5

x2 + x+ 1
dx

= 0.5

∫
1

u
du+

∫
1.5

x2 + x+ 1
dx

= 0.5 ln |x2 + x+ 1|+ C +

∫
1.5

x2 + x+ 1
dx
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From here, we can integrate the right side by completing the square and doing trig substitutions
after setting v to be the squared term.∫

1.5

x2 + x+ 1
dx =

3

2

∫
1

(x+ 1/2)2 + 3
4

dx

=
3

2

∫
1

(x+ 1/2)2 + 3
4

dx

=
3

2

∫
1

(v)2 + 3
4

dv

=
3

2

∫ √
3
2 sec2(θ)

3
4(tan2(θ) + 1)

dθ

=
3

2

∫
2√
3
dθ

=
√

3θ

=
√

3 tan−1

(
2
√

3

3
v

)

=
√

3 tan−1

(
2
√

3

3

(
x+

1

2

))

Therefore, our final answer is

ln |x− 1| − 0.5 ln |x2 + x+ 1| −
√

3 tan−1

(
2
√

3

3

(
x+

1

2

))

3. Integration Techniques!

If you’re looking for easier problems, do problems in Section 7.5 or in the Review section at
the back of the chapter!

∫
(x+ 3)2

x
dx

In the absence of a good substitution, we can simply expand the numerator and evaluate.∫
(x+ 3)2

x
dx =

∫
x2 + 6x+ 9

x
dx

=

∫ (
x+ 6 +

9

x

)
dx

=
1

2
x2 + 6x+ 9 lnx+ C .
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∫
sin2(2x) sin(x) cos4(x)dx

We can try to rewrite everything in terms of sines and cosines, as we know how to deal with
that. From there, we can use techniques we used in the past to evaluate.

∫
sin2(2x) sin(x) cos4(x)dx =

∫
(2 sin(x) cos(x))2 sin(x) cos4(x)dx

= 4

∫
sin2(x) cos2(x) sin(x) cos4(x)dx

= 4

∫
sin3(x) cos6(x)dx

= 4

∫
(1− cos2(x)) cos6(x) sin(x)dx

= 4

∫
(1− u2)(u6)du

= 4

∫
u6 − u8du

= 4

(
1

7
u7 − 0

1

9
u9
)

= 4

(
1

7
cos7(x)− 1

9
cos9(x)

)

∫
x sin(x)

cos2(x)
dx

(Put LIATE to good use.)

The hint tells us that we should probably be using IBP, but it’s not really clear where we
should start. However, LIATE tells us that we should be using algebraic expressions for u and

trigonometric functions for dv, so we reluctantly accept u = x, dv = sin(x)
cos2(x)

dx. However, we can

observe that the right hand side is actually pretty easy to integrate with u-sub for u = cosx or

by noting that sin (x)
cos2(x)

= tan(x) sec(x) which is the derivative of sec(x), so we can do IBP with

u = x

du = dx

dv = tan(x) sec(x)

v = sec(x).

Plugging into IBP gives us∫
x sin(x)

cos2(x)
dx = x sec(x)−

∫
sec(x)dx

= x sec(x)− ln | sec(x) + tan(x)|+ C .
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[The next two are from the MIT Integration Bee, 2007]∫
(2 lnx+ (lnx)2)dx

We can definitely solve this problem by integrating both terms in the integral; the left side is
easy, and the right side can be done with IBP by setting dv = 1. However, there’s actually a
much better way: the chain rule tells us that (fg)′ = f ′g + g′f , which we can integrate to say

fg + C =

∫
f dg + g df.

Now we note that the left term in the integral looks similar to the derivative of the right side,
except we’re off by a term x. With this in mind, if we say f(x) = x and g(x) = (lnx)2, we know
that

f dg = x(2
1

x
lnx) = 2 lnx

g df = (lnx)2

which are the two terms in our integral, so our final integration gives us∫
(2 lnx+ (lnx)2)dx = fg + C = x(lnx)2 + C .

∫
x−1/2

1 + x1/3
dx

(Hint: Section 7.4, Problem 45, from your homework.)

As in our homework, we didn’t like working with these weird roots and would prefer to express
them in terms of integer powers. We fixed this by making the substitution u6 = x, and it works
fine here too! Noting that 6u5du = dx, we can simply substitute and evaluate:∫

x−1/2

1 + x1/3
dx =

∫
u−3

1 + u2
6u5du

= 6

∫
u2

1 + u2
du

= 6

∫
u2 + 1− 1

1 + u2

= 6

∫ (
1− 1

1 + u2

)
du

= 6(u− tan−1(u)) + C

= 6x1/6 − 6 tan−1(x1/6) + C


