MATH 1B DISCUSSION WORKSHEET - 9/27/18

TALKING ABOUT SEQUENCES!

1. Important Terminology

Definition 1.1 (Boundedness). A sequence $\{a_n\}$ is **bounded above** if there is a number M such that $a_n < M$ for all $n \ge 1$. A sequence $\{a_n\}$ is **bounded below** if there is a number M such that $a_n > M$ for all $n \ge 1$. A sequence $\{a_n\}$ is **bounded** if it is *both* bounded above and bounded below.

- (1) What can we say about the graph of any bounded sequence?
- (2) Is the sequence modeled by $a_n = \sin(n)$ bounded above? Bounded below? Bounded?

Definition 1.2 (Monotonicity). A sequence $\{a_n\}$ is **increasing** if for every n, $a_{n+1} > a_n$. A sequence $\{a_n\}$ is **decreasing** if for every n, $a_{n+1} < a_n$. A sequence is **monotonic** if it is either increasing or decreasing.

(1) Let's say we have a sequence $\{a_n\}$ where $a_n = f(n)$ for some function f. What does the behavior of the derivative of f tell us about the monotonicity of $\{a_n\}$? (For example, if f'(x) < 0 for all x, what can we say about $\{a_n\}$?)

Definition 1.3 (Limit of a sequence). A sequence $\{a_n\}$ has the limit L and we can say that $\lim_{n\to\infty} a_n = L$ if for every $\epsilon > 0$ there is a corresponding integer N such that if n > N, then $|a_n - L| < \epsilon$.

- (1) Intuitively or graphically, what does $|a_n L|$ represent?
- (2) In that case, what does $|a_n L| < \epsilon$ mean?
- (3) What, then, does "if n > N, then $|a_n L| < \epsilon$ " mean?
- (4) Rewrite the entire definition of a limit in a way that's easier for you to understand.

Definition 1.4 (Infinite Limit). If we say that $\lim_{n\to\infty} a_n = \infty$, this means that for every positive number M there is a corresponding integer N such that if n > N, then $a_n > M$.

(1) Building off our work from the previous problem, rewrite this definition to make it more intuitive for you as well.

2. Limit Rules

If $\lim_{n\to\infty} a_n = L_a$ and $\lim_{n\to\infty} b_n = L_b$, and k is some constant, then

- (1) $\lim_{n \to \infty} (a_n + b_n) =$
- (2) $\lim_{n\to\infty} (a_n b_n) =$
- (3) $\lim_{n\to\infty} (a_n * b_n) =$
- (4) $\lim_{n\to\infty} (a_n \div b_n) =$
- (5) $\lim_{n\to\infty} k(a_n) =$
- (6) $\lim_{n\to\infty} (a_n)^k =$
- (7) If $\lim_{n\to\infty} a_n = 0$, then $\lim_{n\to\infty} |a_n| =$
- (8) If $\lim_{n\to\infty} |a_n| = 0$, then $\lim_{n\to\infty} a_n =$
- (1) What must be true for us to properly use equation (4)?
- (2) Equations (7) and (8) aren't always true if the limit was some non-zero number. Find counterexamples for them.

3. A single all-inclusive example

Consider the sequence $\{a_n\}$ defined by $a_1 = \sqrt{2}, a_{n+1} = \sqrt{2a_n}$.

- (1) Write out a_2 , then find its value by plugging into a calculator.
- (2) Write out a_3 , then find its value by plugging into a calculator.
- (3) Show that $a_n > 1$ for all n.
- (4) Show that $a_n < 2$ for all n.
- (5) The previous two proofs show that $\{a_n\}$ is ...
- (6) Use the results from (3) and (4) to demonstrate that $a_{n+1} > a_n$ for all n.
- (7) This demonstrates that $\{a_n\}$ is ...
- (8) If statements (5) and (7) are true, then $\{a_n\}$ is ...

(9) (Bonus) Show that
$$\lim_{n\to\infty} a_n = \sqrt{2\sqrt{2\sqrt{2\sqrt{2}\dots}}} = 2.$$