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MIDTERM 2 REVIEW

1. FACTORIAL ALGEBRA

Factorials have started to show up a lot in the second half of this chapter! They're a great sign
that you're going to want to be using the Ratio or Comparison Tests, and they also show up in
the formula for a Taylor Expansion. For this reason, it’s extremely important to know how to
work with them. Writing them out is almost always helpful!

(1) Rewrite (n +2)(n + 1)(n!) as a single factorial.
(nvy2)!

(2) Consider the fraction Q:,—)'

(a) Write out the numerator’s product. How many terms are in the numerator?

(2n) (20D (20-2) = (2)()
There ae Zn fovms

(b) Write out the denominator’s product. How many terms are in the denominator?

(V\y(n-ﬁ(""z) o
Thee ave  n v,

(c) Is there overlap between the terms above and below?

Yes o Ahe Hevmy (MDD (2) (2)(1)

(d) What does the fraction simplify to?

) @a-D o) (D) (=D XD s e N
@”\(M Nln-D(n2) () - (2)(0) &Mm

(3) Consider the sequence given by a, = (n + 4)!.
(a) Write out the products from a3 and a4 (don’t calculate them though). How many
terms are in each of these products?

0,22z 3 6-S 432
Ay =§' =& 76 S a3
(b) Find 2.

Aq _ &7 6-- . ;@

Ay 74 ...

(c) Find and simplify “21,

R ) I S G G B G IO ey
Qe (me)fs). (O
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(4) Consider the sequence given by a, = (3n + 2)L
(a) Write out the products from a3 and a4 (don’t calculate them though). How many
terms are in each of these products?

e=(AD' z 110 a5 = i deym)

G‘-\ (1) =l AN (00 oy g {erm$
(b) Find =

la! } ka2 o8 -~ :\,—“——‘EE_ N
ne- 10 .g.6 . . | ‘_—‘/

(c) Find and simplify *2tt, R
CB_(P_*.D__ ) BmSY (20 MerDOr2) ;(., xS )awa) @ WEZ

(3a) 7 @ ) G )

(5) Follow the steps below to determine whether (2n)! or (n!)? is larger.
(a) Write out the products for n = 3.

(2m! = 6] =6.5-9.3-2 -\
N - 2.3 = 3223232\
(n'y*= 313

(b) How many terms are in each product, in terms of n?

(¢) Which one is larger?
(2v) ' ,L,e(a,,g A< devimy A0 /cgfw‘

(6) Follow the steps below to determine lim,_, 31—7:
(a) Both of these are products as welll How many terms are in each product?

2"‘ 1\0\5 N 'l[fVMS . "\‘. hey ferm) 4 l/'e'/_

(b) Try writing the fraction out for n = 5.

5.4.32-)

(c) Is the numerator larger or smaller than the denominator?
Sn\a‘lcv.

(d) As n increases, does the difference between the two widen?

Yes.

(e) What’s the limit as n approaches infinity?

0.
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2. POWER SERIES MANIPULATION

Becoming comfortable manipulating Power Series is far more about practice than it is about
rules. Once again, an important tool you should be using is writing anything out. Sigina
notation can definitely become confusing, but rewriting it as a polynomial will be much easier
for you to work with because you should be pretty comfortable with polynomials by now.

2.1. Using the —5 power series.

(1) Write the sigma notation expansion for the following. If you get stuck, try writing out

some termsY’ 00 ?
’j
Wi X"
C h=0 !
—,/‘/l-d‘ ! S »“
[ 2
(b)1+12x{70 "‘3’—) i hi!
E (-2x) =| (1Y D x /
nsQ ‘ =0 i h ) o
1 e ——————————— «'{— y ‘z
© 32 N I ‘Z’;(A)\q IS " |
3x 21X T 2)3 | 2
hZ9 h:o -
4 —
() —— o o
T+23 =N ~ = -
X! 2('5?3 = XqZGO x " A
nr\) neo
72
(e) 4+6;x KZ o (
X (‘1*6’«\ X (4 u 3 2
(2) Using the fact that £ In(1+z) = {1 and Ftan™!(2) [ﬂ-];;, write the sigma notation

for each of the following:

IO,. o
T e e [gons

=

(b) tan~(z) —Di N\~ e . o | 2 .

1 G ~) '2{” f{w 2/‘“ T2 2D 2t |

Py

(c) In(3 + 2?) ‘ 5 ‘ . ﬁ:\
I 2x3*7x:f}x(”l?> ( 2 (& ri—s)g: t:"“"{’"
O =S

) i) " . .
Za " (?)337 / ( i ‘ )(4”*} _ - (v \3,_3,._“'

- (-—" Z, N
~ )cg v+ 2+
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4
2.2. Dealing with the sin and cos power series
(1) Write the Maclaurin series for cos(z), in sigma notation as well as writing out the first
four terms. n 7‘1 x4 [
r
. S [P i S £_3
22 2, 2 17 ¢
pr=?
(2) Write the Mac]auun series f01 cos( 2), in sigma notation as well as writing out the first
? 12
X .

__....+_.

ar @

four terms.
Z (-n"_2_
znr
(3) Dliferentlate the sum both by dlfferentlatlng each of the four terms as well as by differ-
entiating v\g;hm the smna notatlon Ensure that they are the same (check the bounds!).

Z(") - % d'X1 12X
5 ) (ZV\Y - 2 4’ 6‘
2
eries for a‘sm( r°). — ? n 4“4'5 s
Ter |
4..-[

(4) Write the Macl%yrm S ( )Z
w(X?
Sin(x ) SAlP N, G =
PUNE Z( ) ity x&
(5) Show that —2z sm(z2) is equal to the ‘derivative of cos( 2)
4 - 4 =} d’ 4u { Ll
c a = (=X (
_(,1\ g - > (1 S P
. Z/ CZI’I") ooy (2#\")‘ ey 4{\(2' \\ \/
-l i

(fiiz () —— fzn*n~ _
2.3. Identifying Maclaurln Serles Convert each of the followmg into a Maclaurin Serles
2 2_ (4 “4nx Y’
=t C2m) ,1

n=
(1) zcos(2x) C°>(ZX\ 2 (é‘i‘," X(O)(zf) 2(“ —_—
”om”('A'

L opTo_
Determine the function modeled by each of the followmg Maclaurin Series.

+5- mS e’
3(“\ 32“'1 )Qo /‘L/) :‘5 [f('\):S:V‘(BK\

(1) 1-22+% -5+

o 3(9")I2"+1
_1\n
(2) Z( 1 2n+1
n=0
26
- & -

2
T__3|+‘T+$5| T

B)1+z-5 tats
l ‘((-\) Sm ()‘\w

e
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3. ABSOLUTE AND CONDITIONAL CONVERGENCE

First, let’s determine how to idenitfy when a series is alternating. For each of the following
sequences, list the first few terms.

If any of these are in the series, then we know it’s alternating!

Now that we know how to identify alternating series, let’s make a step by step procedure for
how to determine whether it is Absolutely Convergent, Conditionally Convergent, or Divergent.

(1) Step 1: Perform Alternating Series Test!
How do we perform the Alternating Series Test?

T anlan) A all n and [0 0, =0 Fhen Sl
a lk‘md"nj 1277 Convery €.

Does it pass AST?
e YES: Proceed to step 2.

e NO: .TL\'(’ 36&:‘(’ lS C]fV‘e U€h+

(2) Step 2: Perform a different test on the absolute value of the series! What are the most
common tests we use with respect to alternating series?

Pato Pust.

Does it converge when you use those tests?

e YES: Luolukj Guers it
¢ NO: COV\CJfffav-‘”j [om/fr‘gfﬁ}-
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4. TELESCOPING SERIES

Telescoping Series are series whose terms cancel out with themselves. It’s unlikely that they
will show up on the test, but they are definitely handy sometimes and are worth talking about.

This is a prime example of a series that isn’t geometric but still has a sum that isn’t too hard
to calculate.

Let’s walk through an example. Let’s say we are trying to find the sum ) 7 ﬂnl—+1—) At face
value, it’s definitely not easy to find the sum of, but let’s find a way around it.

(1) Using partial fraction decomposition, rewrite Hnl_ﬂj as the difference of two fractions.
N [ ne) N 4+

(2) Write out the first few terms of the sum using the partial fraction decomposition. What
do you notice about the sum? Does anything cancel out nicely?

(21 (- e(G- 1)
~

(3) What is the final sum?
———

| This is a great example, but there are actually many examples of telescoping sums! Here are a
| few practice questions:

¢
> o
noo

— A TRl -r) e fr 5
K o Afar AN - — . -7z)
r{iQ Jost =T = Lo O jl{/f”'”;): ’ ‘L(ﬂ'ls)k -

|
oo ———

S il B ’
o , Jei 4 = f \ﬁ
1 - 20 =N /
(2) Find Zm —("‘D\ijﬂd
n=1

(1) Find nli_)ngo(\/ﬁf 1 — /n), and then find i(\/n +1—+n). —

U |
(PosD2n-1y 2 Zrl-l ’2,‘.’”3 ?—"(' A Y b
ST L) 3G Db )
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5. EXTRA PAGES FOR TWO PROBLEMS THAT ARE SIGNIFICANTLY HARDER THAN YOU’LL
FIND ON THE MIDTERM BUT ARE STILL INTERESTING PROBLEMS THAT CAN BE SOLVED
USING ONLY MATERIAL WE'VE LEARNED IN CLASS! (FROM Real Mathematical Analysis)

BY PuGH.

(1) Prove that if the terms of a sequence decrease monotonically (a1 > ag > ...) and converge

[e.9]
to 0 then the series Z ay, converges if and only if the associated dyadic series

n=1
oo
a1 + 2a0 + 4ay + 8ag + ... = Z Qkazk
n=1

converges. [Hint: How can we compare the dyadic series to the original one?]
Note that “if and only if” means that you’ll have to prove two statements:
(a) If the original series converges, then the dyadic one does too.
(b) If the dyadic series converges, then the original one does too.
Seeing that if the dyadic series’ convergence implies that the original series converges
as well is easy. If we write the dyadic series as

a1 +as+as+ag+ayg+ ..
and compare it to the original sequence
a1 +as +az+aq+as+ ...

we can see that each term in the dyadic sequence is greater than or equal to its corre-
sponding term in the original sequence. Therefore, by comparison, if the dyadic sequence
converges, then the original one does too.

On the other hand, let’s take the dyadic series and divide it by two. Then we see that

% Z 2ka2k = %al + a9 + 2a4 + 4as.
If we try to compare again, we rewrite the halved dyadic series as
0.5a1 + a9 +a4 +aq +ag + ...
and compare once again to the original sequence
a1 +ag +az+aq+as+ ...

we can see that each term in the dyadic sequence is less than or equal to its corresponding
term in the original sequence. The terms at indices 2" are equal, but at any index
i = 2" + m where n is the largest integer such that ¢ > 2", we find that in the dyadic
sequence this corresponds to asn+1 but the original sequence it corresponds to simply a;,
and we know that i = 2" +m < 2" 50 a; > agn+1, which means the dyadic sequence is
smaller. Therefore, we know that 2 times the original sequence is greater than its dyadic
sequence, so if the original sequence, then double the original sequence must converge
as well, which by comparison test tells us that the dyadic sequence converges.

In essence, we have shown that the dyadic series is greater than the original series
but less than a constant multiple of the original series, so it is clear that the long-term
behavior of one is directly associated with the long-term behavior of the other.
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(2) An infinite product is an expression [[7; ¢x where ¢; > 0. It’s the equivalent of an
infinite sum, but the terms are multiplied together instead of being added together. The
n't partial product is C,, = (c1)(c2)...(¢,). If Oy, converges to a limit C' # 0 then we
say that the product converges to C. Denote ¢ = 1 + ag. If each ap > 0, prove that
Yo ay converges if and only if |72, ¢ converges. [Hint: Take logarithms.]
First, we take the sums at face value. Let’s look at the comparison between the sums
and products. For any a; and a9, we can see that

(I+a1)(1+a2) =14a1 + a2+ ajaz > a1 + az

for any positive or negative a; and as, because in either case ajaq is positive so it must
be greater. As a result, if we apply this to the sequences, we can see that the second
partial sum is less than or equal to the second partial product. Furthermore, for any
n'h partial product, we can apply the same principle to see that the (n + 1)™ partial
product is greater than the (n + 1)™ partial sum, regardless of whether a,, is positive
or negative, as long as each term is the same sign. As a result, we can tell through the
comparison test that if the sum diverges then the product must diverge too, and if the
product converges then the sum must converge too.

What'’s left, then, is to show that the divergence of the product implies the divergence
of the sum, and the convergence of the sum implies the convergence of the product.
Taking the logarithm of the infinite product, we can see that log ([]cx) = >_ log(cx) =
> log(ar + 1). If we compare aj, and log(ay, + 1), we know that a; > log(ay +1) =
e’ > ai + 1 because e” is monotonically increasing. Now, we know that if a; = 0, then
e’ = 0+1 = 1. For all positive x, the derivative of e* with respect to z is greater than 1,
but the derivative of  + 1 with respect to x is 1, so we know that e* grows faster than
z + 1 and the two are equal at x = 0, so for all positive x we know that e > aj + 1.
Furthermore, for negative x, we know that e* < 1 so the derivative of e” is smaller than
the derivative of x + 1 for all x implying that when x < 0 the value of x 4 1 is less than
the value of e*. Therefore, for all z, we know that e* > x + 1, which allows us to assert
that ap > log(ax + 1) for all ay.

As a result, a > 0, then the comparison test tells us that the infinite sum’s conver-
gence implies the infinite product’s convergence, and if a; < 0, then the infinite product’s
convergence implies the infinite sum’s convergence. (It actually tells us about the con-
vergence of the log of the infinite product, but because ¢, > 0 we know that the product
is positive, in which case log is continuous so the convergence of the log of the infinite
product to some L implies the convergence of the infinite product to e”.)

We have therefore shown that »_ ax converges if and only if [] ¢ converges.



