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5. Extra pages for two problems that are significantly harder than you’ll
find on the midterm but are still interesting problems that can be solved
using only material we’ve learned in class! (From Real Mathematical Analysis)

by Pugh.

(1) Prove that if the terms of a sequence decrease monotonically (a1 ≥ a2 ≥ ...) and converge

to 0 then the series
∞∑
n=1

ak converges if and only if the associated dyadic series

a1 + 2a2 + 4a4 + 8a8 + ... =
∞∑
n=1

2ka2k

converges. [Hint: How can we compare the dyadic series to the original one?]
Note that “if and only if” means that you’ll have to prove two statements:

(a) If the original series converges, then the dyadic one does too.
(b) If the dyadic series converges, then the original one does too.

Seeing that if the dyadic series’ convergence implies that the original series converges
as well is easy. If we write the dyadic series as

a1 + a2 + a2 + a4 + a4 + ...

and compare it to the original sequence

a1 + a2 + a3 + a4 + a5 + ...

we can see that each term in the dyadic sequence is greater than or equal to its corre-
sponding term in the original sequence. Therefore, by comparison, if the dyadic sequence
converges, then the original one does too.

On the other hand, let’s take the dyadic series and divide it by two. Then we see that

1

2

∑
2ka2k =

1

2
a1 + a2 + 2a4 + 4a8.

If we try to compare again, we rewrite the halved dyadic series as

0.5a1 + a2 + a4 + a4 + a8 + ...

and compare once again to the original sequence

a1 + a2 + a3 + a4 + a5 + ...

we can see that each term in the dyadic sequence is less than or equal to its corresponding
term in the original sequence. The terms at indices 2n are equal, but at any index
i = 2n + m where n is the largest integer such that i > 2n, we find that in the dyadic
sequence this corresponds to a2n+1 but the original sequence it corresponds to simply ai,
and we know that i = 2n +m < 2n+1 so ai > a2n+1 , which means the dyadic sequence is
smaller. Therefore, we know that 2 times the original sequence is greater than its dyadic
sequence, so if the original sequence, then double the original sequence must converge
as well, which by comparison test tells us that the dyadic sequence converges.

In essence, we have shown that the dyadic series is greater than the original series
but less than a constant multiple of the original series, so it is clear that the long-term
behavior of one is directly associated with the long-term behavior of the other.
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(2) An infinite product is an expression
∏∞

n=1 ck where ck > 0. It’s the equivalent of an
infinite sum, but the terms are multiplied together instead of being added together. The
nth partial product is Cn = (c1)(c2)...(cn). If Cn converges to a limit C 6= 0 then we
say that the product converges to C. Denote ck = 1 + ak. If each ak ≥ 0, prove that∑∞

n=1 ak converges if and only if
∏∞

n=1 ck converges. [Hint: Take logarithms.]
First, we take the sums at face value. Let’s look at the comparison between the sums

and products. For any a1 and a2, we can see that

(1 + a1)(1 + a2) = 1 + a1 + a2 + a1a2 > a1 + a2

for any positive or negative a1 and a2, because in either case a1a2 is positive so it must
be greater. As a result, if we apply this to the sequences, we can see that the second
partial sum is less than or equal to the second partial product. Furthermore, for any
nth partial product, we can apply the same principle to see that the (n + 1)th partial
product is greater than the (n + 1)th partial sum, regardless of whether an is positive
or negative, as long as each term is the same sign. As a result, we can tell through the
comparison test that if the sum diverges then the product must diverge too, and if the
product converges then the sum must converge too.

What’s left, then, is to show that the divergence of the product implies the divergence
of the sum, and the convergence of the sum implies the convergence of the product.
Taking the logarithm of the infinite product, we can see that log (

∏
ck) =

∑
log(ck) =∑

log(ak + 1). If we compare ak and log(ak + 1), we know that ak ≥ log(ak + 1) =⇒
eak ≥ ak + 1 because ex is monotonically increasing. Now, we know that if ak = 0, then
e0 = 0 + 1 = 1. For all positive x, the derivative of ex with respect to x is greater than 1,
but the derivative of x+ 1 with respect to x is 1, so we know that ex grows faster than
x + 1 and the two are equal at x = 0, so for all positive x we know that eak > ak + 1.
Furthermore, for negative x, we know that ex < 1 so the derivative of ex is smaller than
the derivative of x+ 1 for all x implying that when x < 0 the value of x+ 1 is less than
the value of ex. Therefore, for all x, we know that ex > x+ 1, which allows us to assert
that ak > log(ak + 1) for all ak.

As a result, ak ≥ 0, then the comparison test tells us that the infinite sum’s conver-
gence implies the infinite product’s convergence, and if ak ≤ 0, then the infinite product’s
convergence implies the infinite sum’s convergence. (It actually tells us about the con-
vergence of the log of the infinite product, but because ck > 0 we know that the product
is positive, in which case log is continuous so the convergence of the log of the infinite
product to some L implies the convergence of the infinite product to eL.)

We have therefore shown that
∑
ak converges if and only if

∏
ck converges.


